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Revisit: bootstrap for confidence interval

1. Generate 𝑛 “bootstrap sample” 

data points 𝑥𝑖
∗, 𝑦𝑖

∗

2. Fit linear regression using 𝑥𝑖
∗,

𝑦𝑖
∗

3. Evaluate the regression line on 

fix x-grid

4. Repeat step 1-3 for 𝐵 times 

and collect the values in step 3.

5. For each point in the x-grid, 

calculate the confidence 

interval using collected value 
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https://www.statsmodels.org/stable/examples/notebooks/generated/lowess.html

https://www.statsmodels.org/stable/examples/notebooks/generated/lowess.html


Why resampling?

 These methods refit a model of interest by sampling from the training set, in 

order to obtain additional information about the fitted model

 Resampling approaches can be computationally expensive, because they 

involve fitting the same statistical method multiple times using different 

subsets of the training data

 However, due to recent advances in computing power, the computational requirements of 

resampling methods generally are not prohibitive
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Cross-validation and the bootstrap

 We discuss two resampling methods: cross-validation and the bootstrap

 For example, they provide estimates of test-set prediction error, select the appropriate level 

of flexibility (cross-validation) and the standard deviation (bootstrap) of our parameter 

estimates

 Learning the parameters (including preprocessing) of a prediction function and testing it on 

the same data is a methodological mistake and we should avoid it with caution
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https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html


Training error versus test error

 Recall the distinction between the test error and the training error:

 The test error is the average error that results from using a statistical learning method to 

predict the response on a new observation, one that was not used in training the method

 In contrast, the training error can be easily calculated by applying the statistical learning 

method to the observations used in its training

 But the training error rate often is quite different from the test error rate, and in particular 

the former can dramatically underestimate the latter
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Training- versus test-set performance
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https://stats.stackexchange.com/questions/310687/prove-that-the-expected-mse-is-smaller-in-training-than-in-test


More on prediction-error estimates

 Best solution: a large designated test set. Often not available

1. Some methods make a mathematical adjustment to the training error rate in 

order to estimate the test error rate

 These include the 𝐶𝑝 statistic, AIC and BIC. They are discussed elsewhere in this course

2. Here we instead consider a class of methods that estimate the test error by 

holding out a subset of the training observations from the fitting process, and 

then applying the statistical learning method to those held out observations
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1. Validation-set approach

 Here we randomly divide the available set of samples into two parts: a training 

set and a validation or hold-out set 

 The model is fit on the training set, and the fitted model is used to predict the responses for 

the observations in the validation set

 The resulting validation-set error provides an estimate of the test error. This is typically 

assessed using MSE in the case of a quantitative response and misclassification rate in the 

case of a qualitative (discrete) response

 A random splitting into two halves: left part is training set, right part is validation set
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Example: automobile data

 Want to compare linear vs higher-order polynomial terms in a linear regression

𝑦 =෍

𝑖=0

𝑝

𝛽𝑖𝑥
𝑖 , 𝑝 = 1,2…

 We randomly split the 392 observations into two sets, a training set containing 196 of the 

data points, and a validation set containing the remaining 196 observations
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mpg horsepower

Single run of 

validation set 

MSE

Ten runs of 

validation set 

MSE



Drawbacks of validation set approach

1. The validation estimate of the test error can be highly variable, depending on 

precisely which observations are included in the training set and which 

observations are included in the validation set

2. In the validation approach, only a subset of the observations - those that are 

included in the training set rather than in the validation set - are used to fit the 

model

 This suggests that the validation set error may tend to overestimate the test error for the 

model fit on the entire data set. Since statistical methods tend to per form worse when 

trained on fewer observations
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2. K-fold cross-validation

 Widely used approach for estimating test error

 Estimates can be used to select best model, and to give an idea of the test error of the final 

chosen model

 Idea is to randomly divide the data into 𝑘 equal-sized parts. We leave out part 𝑘, fit the 

model to the other 𝑘 − 1 parts (combined), and then obtain predictions for the left-out 𝑖th
part. This is done in turn for each part 𝑖 = 1,2,… 𝑘, and then the results are combined
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𝑘 = 5 here



The details

 Let the k parts be 𝐶1, 𝐶2, …𝐶𝑘, where 𝐶𝑖 denotes the indices of the observations 

in part 𝑖. There are 𝑛𝑖 observations in part i: if 𝑛 is a multiple of k, then 𝑛𝑖 =
𝑛/𝑘

 Compute

𝐶𝑉(𝑘) =෍

𝑖=1

𝑘
𝑛𝑖
𝑛
𝑀𝑆𝐸𝑖

where 𝑀𝑆𝐸𝑖 =
σ𝑗∈𝐶𝑖

𝑦𝑗− ො𝑦𝑗
2

𝑛𝑖
, and  ො𝑦𝑗 is the fit for observation j, obtained from the data with 

part i removed

 Setting 𝑘 = 𝑛 yields 𝑛-fold or leave-one out cross-validation (LOOCV)
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Auto data revisited

 For LOOCV

 𝐶𝑉(𝑛) =
1

𝑛
σ𝑖=1
𝑛 𝑀𝑆𝐸𝑖
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LOOCV



A nice special case!

 With least-squares linear or polynomial regression, an amazing shortcut makes 

the cost of LOOCV the same as that of a single model! The following formula 

holds:

𝐶𝑉(𝑛) =
1

𝑛
෍

𝑖=1

𝑛

(
𝑦𝑖 − ො𝑦𝑖
1 − ℎ𝑖

)2

 Where ො𝑦𝑖 is the 𝑖th fitted value from the original least squares fit, and ℎ𝑖 is the leverage 

This is like the ordinary MSE, except the 𝑖th residual is divided by 1 − ℎ𝑖.

 LOOCV sometimes useful, but typically doesn't shake up the data enough. The 

estimates from each fold are highly correlated and hence their average can have 

high variance. A better choice is 𝑘 = 5 𝑜𝑟 10
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True and estimated test MSE for the simulated data
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Blue: True test MSE

Black: LOOCV’s MSE

Orange: 10-Fold CV’s MSE

𝑓(𝑥) is a low order polynomial 𝑓(𝑥) is close to linear 𝑓(𝑥) is highly nonlinear



Bias-variance trade-off for cross-validation

 Since each training set is only (𝑘 − 1)/𝑘 as big as the original training set, the 

estimates of prediction error will typically be biased upward 

 This bias is minimized when 𝑘 = 𝑛 (LOOCV), but this estimate has high 

variance, as noted earlier. 𝑘 = 5 or 10 provides a good compromise for this 

bias-variance tradeoff (empirically)

 When we perform LOOCV, we are in effect averaging the outputs of 𝑛 fitted models, each 

of which is trained on an almost identical set of observations; therefore, these outputs are 

highly (positively) correlated with each other

 Since the mean of many highly correlated quantities has higher variance than does the 

mean of many quantities that are not as highly correlated, the test error estimate resulting 

from LOOCV tends to have higher variance than does the test error estimate resulting from 

𝑘-fold CV

16

https://stats.stackexchange.com/questions/223446/variance-of-the-mean-of-correlated-and-uncorrelated-data
https://stats.stackexchange.com/questions/61783/bias-and-variance-in-leave-one-out-vs-k-fold-cross-validation?noredirect=1&lq=1


Cross-validation for classification problems

 We divide the data into 𝑘 roughly equal-sized parts 𝐶1, 𝐶2, … 𝐶𝑘, where 𝐶𝑖
denotes the indices of the observations in part i. There are 𝑛𝑖 observations in 

part 𝑖: if 𝑛 is a multiple of 𝑘, then 𝑛𝑖 = 𝑛/𝑘

 Compute

𝐶𝑉(𝑘) =෍

𝑖=1

𝑘
𝑛𝑖
𝑛
𝐸𝑟𝑟𝑖

where 𝐸𝑟𝑟𝑖 = σ𝑗∈𝐶𝑖
𝐼(𝑦𝑗 ≠ ො𝑦𝑗)/𝑛𝑖
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Brown: True test error

Blue: Training error

Black: 10-Fold CV’s error



Cross-validation: right and wrong

 Consider a simple classifier applied to some two-class data:

1. Starting with 5000 predictors and 50 samples, find the 100 predictors having the largest 

correlation with the class labels

2. We then apply a classifier such as logistic regression, using only these 100 predictors

 How do we estimate the test set performance of this classifier?

 Can we apply cross-validation in step 2, forgetting about step 1?

 This would ignore the fact that in Step 1, the procedure has already seen the 

labels of the training data, and made use of them. This is a form of training and 

must be included in the validation process
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More about cross-validation

20
Finer control on test set size

 Some discussion about time series data

https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
https://stats.stackexchange.com/questions/326228/cross-validation-with-time-series


The Bootstrap

 The bootstrap is a flexible and powerful statistical tool that can be used to 

quantify the uncertainty associated with a given estimator or statistical learning 

method

 For example, it can provide an estimate of the standard error of a coefficient, or a 

confidence interval for that coefficient

 A powerful and general method
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Where does the name came from?

 The use of the term bootstrap derives from the phrase to pull oneself up by 

one's bootstraps, widely thought to be based on one of the eighteenth century 

“The Surprising Adventures of Baron Munchausen” by Rudolph Erich Raspe:

 The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he 

thought to pick himself up by his own bootstraps
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 It is not the same as the term “bootstrap” used in computer 

science meaning to “boot” a computer from a set of core 

instructions, though the derivation is similar

 Bootstrapping usually refers to the starting of a self-starting 

process that is supposed to proceed without external input



A simple example

 Suppose that we wish to invest a fixed sum of money in two financial assets 

that yield returns of 𝑋 and 𝑌, respectively, where 𝑋 and 𝑌 are random 

quantities

 We will invest a fraction 𝛼 of our money in 𝑋, and will invest the remaining 1 − 𝛼 in 𝑌

 We wish to choose 𝛼 to minimize the total risk, or variance, of our investment. In other 

words, we want to minimize 𝑉𝑎𝑟(𝛼𝑋 + (1 − 𝛼)𝑌)

 One can show that the value that minimizes the risk is given by

𝛼 =
𝜎𝑌
2 − 𝜎𝑋𝑌

𝜎𝑋
2 + 𝜎𝑌

2 − 2𝜎𝑋𝑌

where 𝜎𝑋
2 = 𝑉𝑎𝑟 𝑋 , 𝜎𝑌

2 = 𝑉𝑎𝑟 𝑌 , and 𝜎𝑋𝑌 = 𝐶𝑜𝑣(𝑋, 𝑌)
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Example continued

 But the values of 𝜎𝑋
2, 𝜎𝑌

2 and 𝜎𝑋𝑌 are unknown

 We can compute estimates for these quantities, ො𝜎𝑋
2, ො𝜎𝑌

2, ො𝜎𝑋𝑌 using a data set that 

contains measurements for 𝑋 and 𝑌

 We can then estimate the value of 𝛼 that minimizes the variance of our 

investment using

ො𝛼 =
ො𝜎𝑌
2 − ො𝜎𝑋𝑌

ො𝜎𝑋
2 + ො𝜎𝑌

2 − 2 ො𝜎𝑋𝑌
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Example continued

 Each panel displays 100 simulated returns 

for investments 𝑋 and 𝑌
 From left to right and top to bottom, the 

resulting estimates for 𝛼 are 

0.576, 0.532, 0.657, and 0.651

 To estimate the standard deviation of ො𝛼, we 

repeated the process of simulating 100 paired 

observations of X and Y, and estimating 𝛼
1,000 times

 We thereby obtained 1,000 estimates for 𝛼, 

which we can call ො𝛼1, ො𝛼2, … , ො𝛼1000
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 The left-hand panel of the next slide displays a histogram of the resulting 

estimates

 For these simulations the parameters were set to 𝜎𝑋
2 = 1, 𝜎𝑌

2 = 1.25 and 𝜎𝑋𝑌 = 0.5, and so 

we know that the true value of 𝛼 is 0.6 (indicated by the red line)

 The mean over all 1,000 estimates for 𝛼 is

ത𝛼 =
1

1000
෍

𝑟=1

1000

ො𝛼𝑟 = 0.5996

very close to 𝛼 = 0.6, and the standard deviation of the estimates is

1

1000 − 1
෍

𝑟=1

1000

( ො𝛼𝑟 − ത𝛼)2 = 0.083

This gives us a very good idea of the accuracy of ො𝛼 : 𝑆𝐸( ො𝛼) ≈ 0.083
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Example continued



Results

 Left: A histogram of the estimates of 𝛼 obtained by generating 1,000 simulated data sets 

from the true population. Center: A histogram of the estimates of 𝛼 obtained from 1,000 

bootstrap samples from a single data set. Right: The estimates 𝛼 of displayed in the left and 

center panels are shown as boxplots. In each panel, the pink line indicates the true value of 

𝛼
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Now back to the real world

 The procedure outlined above cannot be applied, because for real data we 

cannot generate new samples from the original population

 However, the bootstrap approach allows us to use a computer to mimic the process of 

obtaining new data sets, so that we can estimate the variability of our estimate without 

generating additional samples

 Rather than repeatedly obtaining independent data sets from the population, we instead 

obtain distinct data sets by repeatedly sampling observations from the original data set with 

replacement

 Each of these “bootstrap data sets” is created by sampling with replacement, and is the 

same size as our original dataset. As a result some observations may appear more than once 

in a given bootstrap data set and some not at all
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Example with just 3 observations

 A graphical illustration of the 

bootstrap approach on a small sample 

containing 𝑛 = 3 observations. Each 

bootstrap data set contains 𝑛
observations, sampled with 

replacement from the original data set. 

Each bootstrap data set is used to 

obtain an estimate of 𝛼
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Bootstrap of 𝛼

 Denoting the first bootstrap data set by 𝑍∗1, we use 𝑍∗1 to produce a new 

bootstrap estimate for 𝛼, which we call ො𝛼∗1

 This procedure is repeated 𝐵 times for some large value of 𝐵 (say 100 or 1000), in order to 

produce 𝐵 different bootstrap data sets, 𝑍∗1, 𝑍∗2, … , 𝑍∗𝐵 and 𝐵 corresponding  estimates, 

ො𝛼∗1, ො𝛼∗2, … , ො𝛼∗𝐵

 We estimate the standard error of these bootstrap estimates using the formula

𝑆𝐸𝐵 ො𝛼 =
1

𝐵 − 1
෍

𝑟=1

𝐵

( ො𝛼∗𝑟 −
1

𝐵
෍

𝑟′

𝐵

ො𝛼∗𝑟
′
)2

 This serves as an estimate of the standard error of ො𝛼 estimated from the original 

data set. See center and right panels of Figure in the previous slides. Bootstrap 

results are in blue. For this example 𝑆𝐸𝐵 ො𝛼 = 0.087
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A general picture for the bootstrap
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Other uses of the bootstrap

 Primarily used to obtain standard errors of an estimate.

 Also provides approximate confidence intervals for a population parameter. For example, 

looking at the histogram in the middle panel of the Figure on slide 27, the 5% and 95% 

quantiles of the 1,000 values is (.43; .72)

 This represents an approximate 90% confidence interval for the true 𝛼. This interval is 

called a Bootstrap Percentile confidence interval. It is the simplest method (among many 

approaches) for obtaining a confidence interval from the bootstrap
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The bootstrap in general

 In more complex data situations, figuring out the appropriate way to generate 

bootstrap samples can require some thought

 For example, if the data is a time series, we can't simply sample the observations with 

replacement (Not i.i.d.)

 We can instead create blocks of consecutive observations, and sample those with 

replacements. Then we paste together sampled blocks to obtain a bootstrap dataset
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Can the bootstrap estimate prediction error?

 In cross-validation, each of the 𝑘 validation folds is distinct from the other 𝑘 −
1 folds used for training: there is no overlap. This is crucial for its success 

 To estimate prediction error using the bootstrap, we could think about using each bootstrap 

dataset as our training sample, and the original sample as our validation sample

 But each bootstrap sample has significant overlap with the original data. About two-thirds 

of the original data points appear in each bootstrap sample

 This will cause the bootstrap to seriously underestimate the true prediction error

 Can partly fix this problem by only using predictions for those observations 

that did not (by chance) occur in the current bootstrap sample

 But the method gets complicated, and in the end, cross-validation provides a simpler, more 

attractive approach for estimating prediction error
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https://stats.stackexchange.com/questions/88980/why-on-average-does-each-bootstrap-sample-contain-roughly-two-thirds-of-observat


The Bootstrap versus Permutation tests

 The bootstrap samples from the estimated population, and uses the results to 

estimate standard errors and confidence intervals

 The bootstrap can be used to test a null hypothesis in simple situations. Eg if  θ = 0 is the 

null hypothesis, we check whether the confidence interval for θ contains zero.

 Can also adapt the bootstrap to sample from a null distribution (See Efron and Tibshirani

book “An Introduction to the Bootstrap” (1993), chapter 16) but there's no real advantage 

over permutations

 Permutation methods sample from an estimated null distribution for the data, 

and use this to estimate 𝑝-values and False Discovery Rates for hypothesis 

tests
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Permutation Test

1. Under null hypothesis (𝐻0), make sure the observation is exchangeable

2. Define test statistics 𝑇

3. Calculate the alternative hypothesis 𝑇𝑎 using original observation data

4. Permute the observation data 𝑁 times, Compute 𝑇1, 𝑇2, … , 𝑇𝑁 for each 

permutation. This forms the distribution under null hypothesis

5. Calculate the percentage of 𝑇𝑖 ≥ |𝑇𝑎| to obtain the 𝑝-value
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Permutation Test - Classifier

 The null hypothesis in this test is that the classifier fails to leverage any 

statistical dependency between the features and the labels to make correct 

predictions on left out data

 Generates a null distribution by calculating 𝑛𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 different permutations of the 

data. In each permutation the labels are randomly shuffled, thereby removing any 

dependency between the features and the labels 

 The 𝑝-value output is the fraction of permutations for which the average cross-validation 

score obtained by the model is better than the cross-validation score obtained by the model 

using the original data 

 A low 𝑝-value provides evidence that the dataset contains real dependency between 

features and labels and the classifier was able to utilize this to obtain good results. A high 

𝑝-value could be due to a lack of dependency between features and labels (there is no 

difference in feature values between the classes) or because the classifier was not able to 

use the dependency in the data 
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Permutation Test - Classifier
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Original data – Low 𝑝-value Random data– High 𝑝-value

https://scikit-learn.org/stable/auto_examples/feature_selection/plot_permutation_test_for_classification.html#test-with-permutations-the-significance-of-a-classification-score


Appendix
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Other resampling methods

 Bootstrap-based test vs permutation test

 https://en.wikipedia.org/wiki/Permutation_test

 Jackknife

 https://en.wikipedia.org/wiki/Jackknife_resampling

 https://stats.stackexchange.com/questions/249333/comparison-of-the-jacknife-vs-the-

bootstrap
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https://en.wikipedia.org/wiki/Permutation_test
https://en.wikipedia.org/wiki/Jackknife_resampling
https://stats.stackexchange.com/questions/249333/comparison-of-the-jacknife-vs-the-bootstrap

